(method1) (1) vectorOA+vectorOC= k (vector OB), k=/= 2 (in fact k=2 sin(18 deg)) (2) vectorOB+vectorOD= k (vector OC) (3) vectorOC+vectorOE= k (vector OD) (4) vectorOD+vectorOA= k (vector OE) (5) vectorOE+vectorOB= k (vector OA) (1)+(2)+...+(5) then 2 (OA+ OB+OC+OD+OE)= k (OA+OB+OC+OD+OE) but k =/= 2, so OA+OB+OC+OD+OE= vector(0) (method2) 1. Let O(0,0), A(1,0), B(cost, sint), C(cos2t, sin2t), D(cos3t, sin3t), E(cos4t, sin4t) ,where t= 2pi/5. 2. The solutions of x^5-1=0 are 1+0i, cost+i sint, ..., cos4t+i sin4t. 3. The sum of roots of x^5-1=0 equals 0, so (1+0i)+(cost+i sint)+...+(cos4t+i sin4t)= 0+0 i so, vector OA+OB+...+OE = (0, 0)
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends:
留言列表